IRDS Confluence

International Conference on Rebooting Computing

ſ	Tuesday, November (06, 2018	Wednesday, No	ovember 07, 2018	Thursday, November 08, 20	018 Friday, November	r 09, 2018
8:00 AM	IRDS Outbrief, Greetings		ICRC Breakfast on you		ICRC Breakfast on your own	ICRC + Industry sur	
8:15 AM	IRDS Outbrief, Overview	Breakfast	, , ,			breakfast	
8:30 AM	IRDS Outbrief, App.	Confluence	Kickoff & Snider Fellow	<u> </u>			
8:45 AM	BchMking	Cormidence	Plenary 1 : Bill Chappe		Plenary 2 : Paolo Farabosc	hi /	
9:00 AM	v	_	ca.y z cappc		Bill Chappell	NC 9 Resistive coupled	Welcome
9:15 AM	INDO Outbrief, OysArch				**	VO2 oscillators for image	
9.15 AW						recognition	Introduction HPE
9:30 AM	IRDS Outbrief, More					26 An Efficient Adder	
9:45 AM	Moore		Drook		Drack	Architecture with Three- Independent-Gate Field-	O A LIDE
9.43 AW			Break		Break	Effect Transistors	Q&A HPE
10:00 AM	Q&A		53 The largest cognitive		3 Neuromorphic Computing	7 Parallelized Linear Classification with	Introduction
10:15 AM	Break (TBD)	-	systems will be optoelectronic		with Signal-Mixing Cavities	Volumetric Chemical	AMD
	, ,		·			Perceptrons	
10:30 AM	IRDS Outbrief, OSC		46 Thermodynamic Intelligence, A Heretical		31 Neural Network Activation Functions with Electro-optic	MC 29 RNSnet: In-Memory Neural Network Acceleration	Q&A AMD
10:45 AM			Theory		Absorption Modulators	Using Residue Number System	Break
11:00 AM	IRDS Outbrief, CE/QI	_	38 SC-SD: Towards Low		CD 13 SNRA: A Spintronic	44 Merge Network for a	Introducion
	INDO Odiblici, OL/QI		Power Stochastic		Neuromorphic Reconfigurable Array for In-Circuit Training and	Non-von Neumann	Intel
11:15 AM			Computing using Sigma		Evaluation of Deep Belief Networks	Accumulate Accelerator in a 3D Chip	
			Delta Streams			· ·	
11:30 AM	IRDS Outbrief, Factory		50 Towards Self-Healing Circuit Design Paradigm		39 An Oscillatory Neural Network with Programmable	10 Regular Expression Matching with memristor	Q&A Intel
11:45 AM			with Crosstalk Computing		Resistive Synapses in 28 nm	TCAMs	Connections
12:00 PM	Lunch		Lunch	<u> </u>	CMOS Lunch	Lunch	
12:00 PM	Lulloll		Lunch		Lunon	Lunch	
12:30 PM							
12:45 PM							
1:00 PM			Government roundtable	e	48 Overcoming Technical Challenges in Realizing		Introduction
1:15 PM	Lithography				Molecular Quantum-dot Cellular		Dwave
4.00 DM	10000 d : (0) : 1 (-			Automata		
1:30 PM	IRDS Outbrief, Pkging Int.				22 Hardware Trojan Detection in Implantable Medical Devices		Dwave
1:45 PM					Using Adiabatic Computing		Q&A Dwave
3.00 DM	IDDC Matralagu				المدائم ما فمالد		Drook
2:00 PM	IRDS Metrology				Invited talk		Break
2:15 PM							Introduction
2:15 PM 2:30 PM	IRDS Metrology IRDS Outbrief, ESH/S		Break		Invited talk Break		Introduction IBM
2:15 PM 2:30 PM 2:45 PM	IRDS Outbrief, ESH/S				Break		Introduction
2:15 PM 2:30 PM			OP 2 Design of	QA 20 Constraints	Break SW 8 Hardware-Software Co-		Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM	IRDS Outbrief, ESH/S		OP 2 Design of superconducting optoelectronic networks for	QA 20 Constraints embedding for quantum annealers	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine		Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD)		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing	embedding for quantum annealers	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning		Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM	IRDS Outbrief, ESH/S Q&A		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for	embedding for quantum annealers 33 Exploring More-Coherent	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for		Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD)		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated	embedding for quantum annealers	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning		Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems	CD Circuits and devices	Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM	IRDS Outbrief, ESH/S Q&A Break (TBD)		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum	CD Circuits and devices	Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non- Rectangular Multi-Dimensional Nested Loops using Reshaping		Introduction IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional	CD Circuits and devices MC Memory centric	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computing)	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum	CD Circuits and devices MC Memory centric CP Computing paradigms	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computing)	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computing CMOS)	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co- Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non- Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:45 PM 4:00 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:00 PM 6:15 PM 6:30 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:45 PM 4:00 PM 4:15 PM 4:30 PM 5:15 PM 5:30 PM 5:15 PM 6:00 PM 6:15 PM 6:30 PM 6:30 PM 6:45 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM 6:30 PM 6:45 PM 7:00 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:45 PM 4:00 PM 4:15 PM 4:30 PM 5:15 PM 5:30 PM 5:15 PM 6:00 PM 6:15 PM 6:30 PM 6:30 PM 6:45 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:30 PM 6:30 PM 6:30 PM 7:30 PM 7:30 PM 7:30 PM 7:30 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM 6:45 PM 7:00 PM 7:15 PM 7:30 PM 7:30 PM 7:45 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session Dinner on your own	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:30 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM 6:45 PM 7:00 PM 7:15 PM 7:30 PM 7:45 PM 7:45 PM 8:00 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session Dinner on your own	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:30 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM 6:15 PM 7:00 PM 7:15 PM 7:30 PM 7:30 PM 7:45 PM 8:00 PM 8:15 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session Dinner on your own	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM
2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:30 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 6:00 PM 6:15 PM 6:30 PM 6:15 PM 7:00 PM 7:15 PM 7:30 PM 7:30 PM 7:45 PM 8:00 PM 8:00 PM	IRDS Outbrief, ESH/S Q&A Break (TBD) IRDS Outbrief, Yield IRDS Outbrief, ERM IRDS Outbrief, Bynd CMOS Q&A Perspectives Adjourn Reception IRDS, ICRC,		OP 2 Design of superconducting optoelectronic networks for neuromorphic computing 30 Multi-Level Optimization for Large Fan-In Optical Logic Circuits using Integrated Nanophotonics 32 Multiplication with Fourier Optics: Simulating 16-bit Modular Multiplication 28 An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms towards Light Speed Data Processing Poster session Dinner on your own	embedding for quantum annealers 33 Exploring More-Coherent Quantum Annealing 35 Image classification using quantum inference on the D-Wave 2X 60 Radiographic Inference Based on a Model of V1 Simple Cells Implemented on the D-Wave 2X	Break SW 8 Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning 54 Hybrid Programming for Near-term Quantum Computing Systems 59 High-level Synthesis of Non-Rectangular Multi-Dimensional Nested Loops using Reshaping and Vectorization QE 12 Towards Higher Scalability of Quantum Hardware Emulation using Efficient Resource Sharing 24 Parallel Quantum Computing Emulation ICRC Banquet + Industry	CD Circuits and devices MC Memory centric CP Computing paradigms NC Non CMOS (Computin CMOS) QE Quantum Emulation SW Software Aspects OP Optical Computing	Introduction IBM Q&A IBM